Combinatorial Auctions , Knapsack Problems , and Hill - climbing
نویسنده
چکیده
This paper examines the performance of hill-climbing algorithms on standard test problems for combinatorial auctions (CAs). On single-unit CAs, deterministic hill-climbers are found to perform well, and their performance can be improved signiicantly by randomizing them and restarting them several times, or by using them collectively. For some problems this good performance is shown to be no better than chancel ; on others it is due to a well-chosen scoring function. The paper draws attention to the fact that multi-unit CAs have been studied widely under a diierent name: multidimensional knapsack problems (MDKP). On standard test problems for MDKP, one of the deterministic hill-climbers generates solutions that are on average 99% of the best known solutions.
منابع مشابه
Combinatorial Auctions, Knapsack Problems, and Hill-Climbing Search
This paper examines the performance of hill climbing algo rithms on standard test problems for combinatorial auctions CAs On single unit CAs deterministic hill climbers are found to perform well and their performance can be improved signi cantly by randomizing them and restarting them several times or by using them collectively For some problems this good performance is shown to be no better th...
متن کاملThe COMPSET Algorithm for Subset Selection
Subset selection problems are relevant in many domains. Unfortunately, their combinatorial nature prohibits solving them optimally in most cases. Local search algorithms have been applied to subset selection with varying degrees of success. This work presents COMPSET, a general algorithm for subset selection that invokes an existing local search algorithm from a random subset and its complement...
متن کاملA case study of memetic algorithms for constraint optimization
There is a variety of knapsack problems in the literature. Multidimensional 0-1 Knapsack Problem (MKP) is an NP-hard combinatorial optimization problem having many application areas. Many approaches have been proposed for solving this problem. In this paper, an empirical investigation of memetic algorithms (MAs) that hybridize genetic algorithms (GAs) with hill climbing for solving MKPs is prov...
متن کاملModified Choice Function Heuristic Selection for the Multidimensional Knapsack Problem
Hyper-heuristics are a class of high-level search methods used to solve computationally difficult problems, which operate on a search space of low-level heuristics rather than solutions directly. Previous work has shown that selection hyper-heuristics are able to solve many combinatorial optimisation problems, including the multidimensional 0-1 knapsack problem (MKP). The traditional framework ...
متن کاملAutomated Mechanism Design
Mechanisms design has traditionally been a manual endeavor. In 2002, Conitzer and Sandholm introduced the automated mechanism design (AMD) approach, where the mechanism is computationally created for the specific problem instance at hand. This has several advantages: 1) it can yield better mechanisms than the ones known to date, 2) it applies beyond the problem classes studied manually to date,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001